Graph Neural Controlled Differential Equations for Traffic Forecasting
نویسندگان
چکیده
Traffic forecasting is one of the most popular spatio-temporal tasks in field machine learning. A prevalent approach to combine graph convolutional networks and recurrent neural for processing. There has been fierce competition many novel methods have proposed. In this paper, we present method controlled differential equation (STG-NCDE). Neural equations (NCDEs) are a breakthrough concept processing sequential data. We extend design two NCDEs: temporal other spatial After that, them into single framework. conduct experiments with 6 benchmark datasets 20 baselines. STG-NCDE shows best accuracy all cases, outperforming those baselines by non-trivial margins.
منابع مشابه
Ensemble of Differential Equations using Pareto Optimal for Traffic Forecasting
The formal and empirical proof is that the ensemble of the learning models performs better than the single one. In order to construct the ensemble of the system of ordinary differential equations (ODEs), the two problems (diversity and accuracy of ODEs) are considered. In the paper, we estimate experimentally the model ensemble using multi-objective optimization. This paper presents a pareto op...
متن کاملSimulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations
The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting
The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...
متن کاملDifferential Equations for Feynman Graph Amplitudes
It is by now well established that, by means of the integration by part identities [1], all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first order differential equations for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i6.20587